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The search for new crystalline porous materials, either with an
inorgani¢ or a metat-organic framework (MOFj,is very topical
as fueled by the use of such materials in a range of applications.
These include catalysfseparation$ gas storagéjon-exchangé,
sensors, and optoelectronicdn particular, stable MOFs with
permanent channels or cavities may become effective, convenient,
safe, and cost-effective gas-storage materials for fuel-cell-driven
automobiles in the near futufe&Extensive efforts have been devoted
to the rational design and construction of new MOFs with zeolite-
like, well-defined, stable micro- or mesopore-size channels exhibit-
ing higher, more reversible, or more selective gas affifity.
Pioneered by Yaghi et al., a vast number of organic ligands with a
variety of donor groups and over 40 metal cations have been
explored in MOF constructiof?

Inspired by the unusual stability, extraordinary functional proper-
ties, and numerous applications of fluorous molectiese have
ignited an effort to explore the synthesis and functional properties
of fluorous metat-organic frameworks (FMOFs), wherein hydrogen
atoms are substituted by fluorine atoms in all ligands. Compared
to their non-fluorous Counter.p_arts, FMOFs with fluoro-lined or Figure 1. Structure ofFMOF-1 showing 50% thermal ellipsoidal plots of
fluoro-coated channels or cavities are expected to possess enhancegle building blocks consisting of a tetranuclear &g cluster (a) and
thermal stability and catalytic activity, higher gas affinity and three-coordinate Ag(l) centers (b), a space-filling representation of the large
selectivity, and higher stability to oxidation and light2 In fluoro-lined channels (c), and a perspective view of the small cavities,
addition, fluorination may impart a variety of new functional denoted by black spheres, surrounding the large channels (d).

roperties to FMOFs, such as superacidity, enhanced hydrophobic- ) )
iFt)y, Tow surface energy and surfrfce tensi)c/)n, low refraci/ive i?wdex, connected tetranuclear [Abzg] clusters linked by three-coordinate

exceptional chemical and biological inertness, and excellent optical Ag(l) cent.e.rs (Figure 1). The.5|x triazolate ||gaqu utilize their 1-
and electrical propertiéd.Many nanoscale fluorous environments ~and 2-positioned N-atoms to link four four-coordinate Ag(2) atoms

have been created mainly via self-assembly processes, includingNt© tetranuclear [AgTze] clusters with adjacent Ag(2)Ag(2)
nanoballs, channels, micelles, vesicles, microbubbles, tubules, andlistance of 3.469(1) A. The equatorial AgE(4) and Ag(2y
hollow fibers:14However, porous FMOFs providing a perfluori- N(5) dlstances. are 2.13(1) and 2.18(1) A, respectively, and the axial
nated pore surface are yet unknown among reported MOFs. AQ(2)-N(2) distance is 2.62(1) A. The [Az] clusters are
This work is in the context of ongoing efforts that we have interconnected via three-coordinate Ag(1) atoms through the
recently launched to study the structure, optoelectronic properties4-Positioned N atoms of the triazolate ligands, with Agtl1)
and acid-base chemistry of coinage-metal triazoldeShe work = 2.21(1), Ag(1)-N(3) = 2.272(9) A, and N(1yAg(1)-N(3) =
herein demonstrates an expansion of the potential of such materialst28-1(2), generating a 3D framework of{4)(4*-6>-8°-10) topol-
to include FMOFs. A few reports on MOFs utilizing non-fluorinated 09y (see Figure S1 in the Supporting Information). The framework
metal triazolates have recently appeat®@ne of our strategies to  consists of interconnected large open-ended, hollow tubes extending
obtain porous FMOFs with fluoro-lined channels exploits robust, along both thea- and b-axes, and the hollow tubes intersect at
perfluorinated metattriazolate clusters as building blocks, which ~ crystallographically imposed special positions with &npoint-
bear unsaturated metal sites an@N donor atoms. Such building ~ group symmetry. The cylindrical channels of the tubular framework
blocks, therefore, can readily assemble into coordination polymers possess hydrophobic internal cavities, as the @#ups of the
with 1-, 2-, or 3D framework structurés. perfluorinated ligands point into the channels. A cross section of
The sodium salt of the perfluorinated ligand 3,5-bis(trifluorom- €ach fluoro-lined channel in the space-filling representation entails
ethyl)-1,2,4-triazolate (NaTZ} reacts with silver nitrate in methanol @ semirectangular shape withl2.2 A x 7.3 A dimensions. The
to afford colorless crystals upon evaporation and recrystallization walls of the channels consist of diamond-shaped small cavities with
from acetonitrile/toluene. The crystallinity remains intact after ~6.6 A x 4.9 A dimensions (Figure 1d). Each cavity is formed by
evacuating the crystals by heating at 100 under vacuum two adjacent [AgT z¢] clusters interconnected by two Ag(l) atoms.
overnight. Analysis of the evacuated crystals by single-crystal X-ray Two pairs of channel-surface gfgroups located on top of the
diffraction reveals a neutral FMOF with the formul&g,[Ags- cavity function as a gate for the small cavity to communicate with
Tzg]}n, FMOF-1.2° The crystal structure offMOF-1 shows the large channel. The fluoro-lined channels account for 40.8% of
extended 3D nanotubular open frameworks consisting of six- the unit cell volume as calculated by PLATGNwhich is the
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that fluorous coordination polymers of this type will find applica-
tions in gas storage and separation, catalysis, sensors, switches,
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Figure 2. Volumetric uptake of Mand Q gases (top), and+yas (bottom)
within FMOF-1 at 77 K. (Inset) Isotherms of a low-pressure run of H
adsorption/desorption cycle.

highest in metattriazolate framework§ and comparable to the
best high-porosity MOF%.6
The architectural stability and porosity BMOF-1 is confirmed

by the gas adsorption results at 77 K (Figure 2). The adsorption

isotherms of @and N, within FMOF-1 at low pressure show two
pore-filling steps at lod¥/Pg) of —4.0 and—3.2 for G, and—4.0

and —2.7 for Nb. It is reasonable to assign the first uptake to
micropore filling of gas molecules into the large channels, whereas
the second steep uptake is assigned to the small pores since the

actuators, anda-type field-effect transistors.
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